A Sequence of Unimodal Polynomials

نویسندگان

  • GEORGE BOROS
  • VICTOR H. MOLL
چکیده

A finite sequence of real numbers {d0, d1, · · · , dm} is said to be unimodal if there exists an index 0 ≤ j ≤ m such that d0 ≤ d1 ≤ · · · ≤ dj and dj ≥ dj+1 ≥ · · · ≥ dm. A polynomial is said to be unimodal if its sequence of coefficients is unimodal. The sequence {d0, d1, · · · , dm} with dj ≥ 0 is said to be logarithmically concave (or log concave for short) if dj+1dj−1 ≤ dj for 1 ≤ j ≤ m − 1. It is easy to see that if a sequence is log concave then it is unimodal [16]. Unimodal polynomials arise often in combinatorics, geometry, and algebra, and have been the subject of considerable research. The reader is referred to [11, 6] for surveys of the diverse techniques employed to prove that specific families of polynomials are unimodal. In this paper we prove the unimodalityof a specific class of Jacobi polynomials. The general Jacobi polynomials P (α,β) m (z) can be defined by

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some Families of Graphs whose Domination Polynomials are Unimodal

Let $G$ be a simple graph of order $n$. The domination polynomial of $G$ is the polynomial $D(G, x)=sum_{i=gamma(G)}^{n} d(G,i) x^{i}$, where $d(G,i)$ is the number of dominating sets of $G$ of size $i$ and $gamma(G)$ is the domination number of $G$. In this paper we present some families of graphs whose domination polynomials are unimodal.

متن کامل

Unimodality and Log-Concavity of Polynomials

A polynomial is unimodal if its sequence of coefficients are increasing up to an index, and then are decreasing after that index. A polynomial is logconcave if the sequence of the logarithms of the coefficients is concave. We prove that if P (x) is a polynomial with nonnegative non-decreasing coefficients then P (x+z) is unimodal for any natural z. Furthermore, we prove that if P (x) is a log-c...

متن کامل

On a Sequence of Unimodal Polynomials Arising from a Family of Definite Integrals

The purpose of this paper is to establish the unimodality and to determine the mode of a class of Jacobi polynomials which arises in the exact integration of certain rational functions as well as in the Taylor expansion of the double square rot. Journal of Math. Anal. Appl. 237, 272-287, 1999.

متن کامل

On the unimodality of independence polynomials of very well-covered graphs

The independence polynomial i(G, x) of a graph G is the generating function of the numbers of independent sets of each size. A graph of order n is very well-covered if every maximal independent set has size n/2. Levit and Mandrescu conjectured that the independence polynomial of every very well-covered graph is unimodal (that is, the sequence of coefficients is nondecreasing, then nonincreasing...

متن کامل

Unimodality of Eulerian quasisymmetric functions

We prove two conjectures of Shareshian and Wachs about Eulerian quasisymmetric functions and polynomials. The first states that the cycle type Eulerian quasisymmetric function Qλ,j is Schur-positive, and moreover that the sequence Qλ,j as j varies is Schur-unimodal. The second conjecture, which we prove using the first, states that the cycle type (q, p)-Eulerian polynomial A λ (q, p, q −1t) is ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999